在进行比较复杂的板子设计的时候,你必须进行一些设计权衡。因为这些权衡,那么就存在一些因素会影响到PCB的电源分配网络的设计。
当电容安装在PCB板上时,就会存在一个额外的回路电感,这个电感就与电容的安装有关系。回路电感值的大小是依赖于设计的。回路电感的大小取决于电容到过孔的这段线的线宽和线长,走线的长度即连接电容和电源/地平面长度,两个孔间的距离,孔的直径,电容的焊盘,等等。如图1所示为各种电容的安装图形。
图1 最佳的和最差的电容布局
减小电容回路电感的设计要点:
■孔要放在离电容尽可能近的地方。减小电源/地的孔间距。如果可以,用多对电源/地孔并联在一起。诸如电流极性相反的两个孔放置的尽量近,电流极性相同的孔放置的尽量远。
■用短而宽的走线来连接孔和电容引脚。
■把电容摆放在PCB的表面(顶层和底层)尽量靠近他们相应的电源/地平面。这样能减小孔之间的距离。在电源/地之间用薄的电解质。
接下来是三种不同情况的设计,对于电容的安装和传播电感。图2表示的是各种设计情况对回路电感量的引入情况。
图2 设计情况
情况1-差的设计
■设计人员不关注电源分配网络(PDN)的设计。
■孔的间距没有优化。
■电源和地平面间的距离没有优化。
■孔到电容引脚之间的走线距离较长。
对于整个回路电感大小来讲,回路电感主要来自所布的线,因为与其它两种情况比较,差的设计时的线长是它们(好的设计和非常好的设计)的5倍。从安装电容的底层到最近平面的距离也是回路电感大小的主要因素。因为这是没有优化的(10mil),走线对整个回路电感大小的影响是非常大的。同样,因为设计人员在电源和地之间用了10mil的电介质材料,那么回路电感的次要因素来自传播电感。过孔间的距离没有优化的效果相对于小孔的长度就没有那么的显著。孔的影响在比较长的过孔时会变得更大。
情况2-好的设计
■设计人员关注了部分电源分配网络(PDN)的设计。
■孔的间距有所改善。孔的长度保持不变。
■电源和地平面间的距离有所改善。
■过孔到电容引脚之间的走线距离经过了优化。
走线的回路电感依然还是整个回路电感的主要贡献者。但是,好的设计的走线回路电感要比差的设计情况的的走线回路电感小2.7倍左右。因为设计人员减小了电介质的厚度,从10mil减小到了5mil,传播电感减小了一半。由于减小了过孔间的距离,过孔的影响有了一点点改善。
情况3-非常好的设计
■设计人员非常注重PDN的设计。
■孔的间距和长度都有改善。
■电源和地之间的距离也进行了充分的优化。
■ 过孔到电容引脚之间的走线距离经过了优化。
非常好的设计的走线的电感比差的设计的走线电感要小大约7.65倍。由于减少了走线长度,在PCB板上减少了从电容安装的底层表面到最近的平面层的厚度,这就达到了目的。由于设计人员已经优化了电源和地之间的电解质层厚度,传播电感就会大大的减小。由于孔间距和孔长度大大的减小,那么过孔的回路电感也得到了显著改善。相比差的设计,由于7个主要因素的其中之一减少,非常好的设计情况的总回路电感就被减少了。。
在PCB板上,额外的过孔回路电感通过安装电容被引入,这样就降低电容的谐振频率。当你在设计电源分配网络(PDN)时,必须要考虑到这个因素。在高频设计的时候,减小回路电感是降低阻抗的唯一能看得见的方法。
对于给定的电源,相比较非常好的设计和差的设计情况,PDN工具产生的报告显示非常好的设计的PCB截止频率会更高。这也许与预期的结果是相反的,因为相对于对低截止频率的去耦,对较高截止频率的去耦需要更多的电容。
对于非常好的设计的情况,较高的截止频率意味着能对较高频率进行去耦。摆放在PCB板上的电容对噪声直到一个较高频都有去耦效果。
对于差的设计的情况,对超过较低截止频率的PCB板不能去耦。任何额外的电容增加,即增加超过截止频率的去耦电容只能增加BOM成本而对去耦效果没有任何影响。相对于非常好的设计,对于差的这种设计情况,其电源分配网络的设计对于某一特定频率的噪声更容易受到影响
作为另外一个例子,假设一块20层的PCB板总共有115mil的厚度。电源层在第3层。从第一层(FPGA在的这一层)到第3层的厚度有12mil。那么从底层到第3层的厚度就是103mil。电源和地层被3mil后的电介质分离开。对于这种轨迹的BGA孔的电感大小为5nH(对于这种电源轨迹5对孔)。为了应对第一层比较紧密的布局布线区域,与之相关联的去耦电容都安装在底层。由于这样安装会有很长的过孔,这种权衡设计导致了很高的电容安装电感值。经过充分优化后,0402封装的电容在底层的安装电感是2.3nH,而同样的电容放在第一层的安装电感是0.57nH。
为了改善这种给轨迹的PDN效果,你可以把一些高频电容放置在第一层,同时把中频和bulk电容还是放在原来的位置上即底层。这种电路设计对PDN是截止的解决方法,因为高频电容是在截止频率以下作为第一响应的电容。电容的效果依赖于总的回路电感(电容的安装电感+传播电感+BGA孔的电感)与FPGA。你可以把高频电容放在第一层并离FPGA稍微远一点点的地方。电容放在FPGA breakout区域外的传播电感是0.2nH。相对于原来放置在底层的方法,这种新的放置方法还是有益的,因为总的回路电感(0.57nH+0.2nH+0.05nH=0.82nH)比放置在底层的时候的总电感要小。
PCB板的传播电感是与设计是相关,电源和地平面间的介质中它是均匀存在的。3mil厚度或者更薄的厚度是最佳的减小平面传播电感的设计。你可以根据如下的设计指导来提升PDN的性能。
如下的是关于顺序重要性的设计指导,从第一层到底层—在第一层的设计指导是最重要的。
■减小电源和地层间电介质厚度。当设计板子的叠层时,确定电源、层和其他的层。举一个例子,如叠层PWR1 - GND1 - SIG1 - SIG2- GND2 - PWR2要优于PWR1 - SIG1 - GND1 - SIG2 - GND2 - PWR2这种叠层。第二种情况的结果是没有对电源和地之间的距离优化的设计。这样的设置会导致大电容传播电感在PWR1/GND1之间比在PWR2/GND2之间的电感大。你可以在电源和地平面之间找到一种典型的3mil的电介质厚度而不增加额外的成本。对于额外的性能改善,考虑比3mil更薄的电介质厚度。但是,这会导致PCB的成本上升。
■当选定电容的时候,选择多个电容值,而不是选择一个相同值的大电容来达到目标阻抗。在PDN中,阻抗的峰值是由谐振反应形成的。高ESR在谐振频率点能抑制谐振,因此减少阻抗峰值的高度。在电容的谐振频率处和阻抗峰值处,用一些电容值相同的电容能截止的减少ESR。
在一个很宽的频率范围内,选择多种电容值的电容种类,能维持一个相对高的ESR。
■选择放置高频电容的位置,以减少整个回路电感。整个电感是由电容的ESL、安装电感、传播电感和BGA的过孔电感组成的。在放置电容时优先放置高频电容,其次是中频和低频电容。
■当在分割平面时,确保平面的形状成适当的方形。避免狭长的平面形状,因为这样做会限制电流的大小和增加平面的传播电感。
■中频和低频的电容对于如何放置没有那么的敏感。可以把他们放在离FPGA稍微远一点的地方。
权衡多路设计的情况
在一块有多路外设的PCB板上,你的设计就不能再共享一个供电电源。这也许需要你通过你的设计去执行DDR的电源接口,联合各种I/O口的电源轨迹,或者联合各种接收端的电源轨迹以减少PCB的BOM成本和PCB的布局复杂度。
电源轨迹共享增加了PDN的复杂度,同时在PCB上和die的位置处也增加了大量的噪声。对于多路的情况,设计电源的分配解决方法主要有两步:
1 低频解决方法
2 高频解决方法
在非常低频的时候,第一步确保VRM的大小是否适合处理各种电流的需要。